计算溶液所需的质量、体积或浓度。
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
货号 (SKU) | 包装规格 | 是否现货 | 价格 | 数量 |
---|---|---|---|---|
P136147-1mg |
1mg |
现货 ![]() |
| |
P136147-5mg |
5mg |
期货 ![]() |
| |
P136147-25mg |
25mg |
期货 ![]() |
|
别名 | 原花青素 B2 |
---|---|
英文别名 | BDBM50553253 | P17914 | AKOS008901339 | Proanthocyanidin B2 | PROCYANIDIN B2, (+)- | (2R,2'R,3R,3'R,4R)-2,2'-bis(3,4-dihydroxyphenyl)-3,3',4,4'-tetrahydro-2H,2'H-4,8'-bichromene-3,3',5,5',7,7'-hexol | (4,8'-BI-2H-1-BENZOPYRAN)-3,3',5,5',7,7'-HEXOL, 2,2'-B |
规格或纯度 | ≥90% |
英文名称 | ProcyanidinB2 |
生化机理 | 原花青素 B2 在减少颗粒细胞凋亡和诱导自噬过程中发挥了有效和有益的作用,并对糖尿病并发症产生了多种强效的药理保护作用。在体外:原花青素 B2 可降低 FoxO1 蛋白水平,提高颗粒细胞活力,上调 LC3-II 蛋白水平,降低颗粒细胞凋亡率。在氧化应激条件下,青花素 B2 逆转了 FoxO1 的核定位,提高了其在细胞质中的水平。此外,FoxO1基因敲除抑制了原花青素B2诱导的保护作用。 |
应用 | Procyanidin B2能够诱导自噬,减少颗粒细胞凋亡,并且对能够降低糖尿病并发症的发生。 |
储存温度 | 2-8°C储存,充氩 |
运输条件 | 冰袋运输 |
产品介绍 |
Procyanidin B2能够诱导自噬,减少颗粒细胞凋亡,并且对能够降低糖尿病并发症的发生。 Procyanidin B2 exerts a potent and beneficial role in reducing granulosa cell apoptosis and inducing autophagy process,and exerts a variety of potent protective pharmacological effects on diabetic complications. |
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
作用机制 | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | 参考文献 |
---|
PubChem SID | 504756878 |
---|---|
分子类型 | 小分子 |
IUPAC Name | (2R,3R)-2-(3,4-dihydroxyphenyl)-8-[(2R,3R,4R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-4-yl]-3,4-dihydro-2H-chromene-3,5,7-triol |
INCHI | InChI=1S/C30H26O12/c31-13-7-20(37)24-23(8-13)41-29(12-2-4-16(33)19(36)6-12)27(40)26(24)25-21(38)10-17(34)14-9-22(39)28(42-30(14)25)11-1-3-15(32)18(35)5-11/h1-8,10,22,26-29,31-40H,9H2/t22-,26-,27-,28-,29-/m1/s1 |
InChi Key | XFZJEEAOWLFHDH-NFJBMHMQSA-N |
Canonical SMILES | C1C(C(OC2=C1C(=CC(=C2C3C(C(OC4=CC(=CC(=C34)O)O)C5=CC(=C(C=C5)O)O)O)O)O)C6=CC(=C(C=C6)O)O)O |
Isomeric SMILES | C1[C@H]([C@H](OC2=C1C(=CC(=C2[C@@H]3[C@H]([C@H](OC4=CC(=CC(=C34)O)O)C5=CC(=C(C=C5)O)O)O)O)O)C6=CC(=C(C=C6)O)O)O |
PubChem CID | 122738 |
分子量 | 578.52 |
折光率 | 1.8 |
---|---|
沸点 | 955.32° C |
熔点 | 197-198°C |
分子量 | 578.500 g/mol |
XLogP3 | 2.400 |
氢键供体数Hydrogen Bond Donor Count | 10 |
氢键受体数Hydrogen Bond Acceptor Count | 12 |
可旋转键计数Rotatable Bond Count | 3 |
精确质量Exact Mass | 578.142 Da |
单同位素质量Monoisotopic Mass | 578.142 Da |
拓扑极表面积Topological Polar Surface Area | 221.000 Ų |
重原子数Heavy Atom Count | 42 |
形式电荷Formal Charge | 0 |
复杂度Complexity | 925.000 |
同位素原子数Isotope Atom Count | 0 |
定义的原子立体中心计数Defined Atom Stereocenter Count | 5 |
未定义的原子立体中心计数Undefined Atom Stereocenter Count | 0 |
定义的键立体中心计数Defined Bond Stereocenter Count | 0 |
未定义的键立体中心计数Undefined Bond Stereocenter Count | 0 |
所有立体化学键的总数The total count of all stereochemical bonds | 0 |
共价键合单元计数Covalently-Bonded Unit Count | 1 |
Purity(HPLC) | 90-100(%) |
---|---|
Appearance(P136147) | Light Beige to Dark Brown Powder or Solid |
Proton NMR spectrum | Conforms to Structure |
1. Lei He, Qian Hu, Jiukai Zhang, Ranran Xing, Yongsheng Zhao, Ning Yu, Ying Chen. (2023) An integrated untargeted metabolomic approach reveals the quality characteristics of black soybeans from different geographical origins in China. FOOD RESEARCH INTERNATIONAL, 169 (112908). [PMID:37254343] [10.1016/j.foodres.2023.112908] |
2. Lei He, Qian Hu, Liyang Wei, Xuliyang Ge, Ning Yu, Ying Chen. (2023) Unravelling dynamic changes in non-volatile and volatile metabolites of pulses during soaking: An integrated metabolomics approach. FOOD CHEMISTRY, 422 (136231). [PMID:37141754] [10.1016/j.foodchem.2023.136231] |
3. Su Xuexia, Bai Cuihua, Wang Xianghe, Liu Huilin, Zhu Yongcong, Wei Leping, Cui Zixiao, Yao Lixian. (2022) Potassium Sulfate Spray Promotes Fruit Color Preference via Regulation of Pigment Profile in Litchi Pericarp. Frontiers in Plant Science, 13 [PMID:35774808] [10.3389/fpls.2022.925609] |
4. Yuting Fan, Qingyu He, Chao Gan, Zhen Wen, Jiang Yi. (2022) Investigation of binding interaction between bovine α-lactalbumin and procyanidin B2 by spectroscopic methods and molecular docking. FOOD CHEMISTRY, 384 (132509). [PMID:35217463] [10.1016/j.foodchem.2022.132509] |
5. Zhang Haipin, Song Huijia, Tian Xuemeng, Wang Yue, Hao Yi, Wang Wenting, Gao Ruixia, Yang Wan, Ke YuShen, Tang Yuhai. (2021) Magnetic imprinted nanoparticles with synergistic tailoring of covalent and non-covalent interactions for purification and detection of procyanidin B2. MICROCHIMICA ACTA, 188 (1): (1-12). [PMID:33403455] [10.1007/s00604-020-04693-x] |
6. Taotao Dai, Jun Chen, David Julian McClements, Ti Li, Chengmei Liu. (2019) Investigation the interaction between procyanidin dimer and α-glucosidase: Spectroscopic analyses and molecular docking simulation. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 130 (315). [PMID:30794902] [10.1016/j.ijbiomac.2019.02.105] |
7. Qian Li, Chengmei Liu, Ti Li, David Julian McClements, Yinxin Fu, Jiyan Liu. (2018) Comparison of phytochemical profiles and antiproliferative activities of different proanthocyanidins fractions from Choerospondias axillaris fruit peels. FOOD RESEARCH INTERNATIONAL, 113 (298). [PMID:30195524] [10.1016/j.foodres.2018.07.006] |
8. Jie Zheng, Yu-yan An, Xin-xin Feng, Liang-ju Wang. (2017) Rhizospheric application with 5-aminolevulinic acid improves coloration and quality in ‘Fuji’ apples. SCIENTIA HORTICULTURAE, 224 (74). [10.1016/j.scienta.2017.06.004] |
1. Lei He, Qian Hu, Jiukai Zhang, Ranran Xing, Yongsheng Zhao, Ning Yu, Ying Chen. (2023) An integrated untargeted metabolomic approach reveals the quality characteristics of black soybeans from different geographical origins in China. FOOD RESEARCH INTERNATIONAL, 169 (112908). [PMID:37254343] [10.1016/j.foodres.2023.112908] |
2. Lei He, Qian Hu, Liyang Wei, Xuliyang Ge, Ning Yu, Ying Chen. (2023) Unravelling dynamic changes in non-volatile and volatile metabolites of pulses during soaking: An integrated metabolomics approach. FOOD CHEMISTRY, 422 (136231). [PMID:37141754] [10.1016/j.foodchem.2023.136231] |
3. Su Xuexia, Bai Cuihua, Wang Xianghe, Liu Huilin, Zhu Yongcong, Wei Leping, Cui Zixiao, Yao Lixian. (2022) Potassium Sulfate Spray Promotes Fruit Color Preference via Regulation of Pigment Profile in Litchi Pericarp. Frontiers in Plant Science, 13 [PMID:35774808] [10.3389/fpls.2022.925609] |
4. Yuting Fan, Qingyu He, Chao Gan, Zhen Wen, Jiang Yi. (2022) Investigation of binding interaction between bovine α-lactalbumin and procyanidin B2 by spectroscopic methods and molecular docking. FOOD CHEMISTRY, 384 (132509). [PMID:35217463] [10.1016/j.foodchem.2022.132509] |
5. Zhang Haipin, Song Huijia, Tian Xuemeng, Wang Yue, Hao Yi, Wang Wenting, Gao Ruixia, Yang Wan, Ke YuShen, Tang Yuhai. (2021) Magnetic imprinted nanoparticles with synergistic tailoring of covalent and non-covalent interactions for purification and detection of procyanidin B2. MICROCHIMICA ACTA, 188 (1): (1-12). [PMID:33403455] [10.1007/s00604-020-04693-x] |
6. Taotao Dai, Jun Chen, David Julian McClements, Ti Li, Chengmei Liu. (2019) Investigation the interaction between procyanidin dimer and α-glucosidase: Spectroscopic analyses and molecular docking simulation. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 130 (315). [PMID:30794902] [10.1016/j.ijbiomac.2019.02.105] |
7. Qian Li, Chengmei Liu, Ti Li, David Julian McClements, Yinxin Fu, Jiyan Liu. (2018) Comparison of phytochemical profiles and antiproliferative activities of different proanthocyanidins fractions from Choerospondias axillaris fruit peels. FOOD RESEARCH INTERNATIONAL, 113 (298). [PMID:30195524] [10.1016/j.foodres.2018.07.006] |
8. Jie Zheng, Yu-yan An, Xin-xin Feng, Liang-ju Wang. (2017) Rhizospheric application with 5-aminolevulinic acid improves coloration and quality in ‘Fuji’ apples. SCIENTIA HORTICULTURAE, 224 (74). [10.1016/j.scienta.2017.06.004] |