计算溶液所需的质量、体积或浓度。
活性类型 | 活性值-log(M) | 作用机制 | 期刊 | 参考文献(PubMed IDs) |
---|
货号 (SKU) | 包装规格 | 是否现货 | 价格 | 数量 |
---|---|---|---|---|
K126884-5mg |
5mg |
现货 ![]() |
| |
K126884-25mg |
25mg |
现货 ![]() |
| |
K126884-100mg |
100mg |
现货 ![]() |
|
英文别名 | CS-0146 | KU-55933, >=98% (HPLC) | 2-Morpholin-4-yl-6-thianthren-1-yl-pyran-4-one | ATM Kinase Inhibitor | HMS3265N15 | HMS3413P10 | 2-Morpholino-6-(thianthren-1-yl)-4H-pyran-4-one | HMS3244P07 | SCHEMBL1984941 | NCGC00263190-13 | BCP01834 | EC-000.1920 | |
---|---|
规格或纯度 | Moligand™, ≥98% |
英文名称 | KU-55933 (ATM Kinase Inhibitor) |
生化机理 | KU-55933 是一种非常有效的共济失调毛细血管扩张症(A-T)突变(ATM)激酶特异性抑制剂(IC50 = 13 nM)。KU-22933 可使癌细胞对电离辐射和细胞毒性 drμgs 敏感。化合物 KU-22933 可阻断 ATM 介导的 p53、gH2AX、NBS1 和 SMC1 磷酸化。IC 50 值分别为 12.9(ATM)、2000(DNA-PK)、9300(mTOR)、16600(PI3K)、>100000(ATR)和 >100000 nM(PI4K)。使细胞对电离辐射和化疗药物敏感。 |
应用 | A cell-permeable, potent, selective and ATP-competitive ATM inhibitor |
储存温度 | -20°C储存 |
运输条件 | 超低温冰袋运输 |
作用类型 | 抑制剂 |
作用机制 | ATM 丝氨酸/苏氨酸激酶抑制剂 |
备注 | 如果有可能,您尽量在使用的当天配置溶液,并在当天使用完它。但是,如果您需要预先配制储备溶液,我们建议您将溶液等份保存在-20°C的密封小瓶中。通常,它们最多可以使用一个月。在使用前和打开样品瓶之前,我们建议您让您的产品在室温下平衡至少1小时。需要更多关于溶解度,用法和处理的建议吗?请访问我们的常见问题(FAQ)页面以获取更多详细信息。 |
产品介绍 |
KU-55933是ATM抑制剂,IC50和Ki分别为13和2.2 nM,对DNA-PK,PI3K/PI4K,ATR和mTOR的活性较低。A cell-permeable, potent, selective and ATP-competitive ATM inhibitor KU-55933 (ATM Kinase Inhibitor) is a potent and specific ATM inhibitor with IC50/Ki of 12.9 nM/2.2 nM in cell-free assays, and is highly selective for ATM as compared to DNA-PK, PI3K/PI4K, ATR and mTOR. |
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
活性类型 | Relation | Activity value | Units | Action Type | Journal | PubMed Id | doi | Assay Aladdin ID |
---|
作用机制 | Action Type | target ID | Target Name | Target Type | Target Organism | Binding Site Name | 参考文献 |
---|
分子类型 | 小分子 |
---|---|
IUPAC Name | 2-morpholin-4-yl-6-thianthren-1-ylpyran-4-one |
INCHI | InChI=1S/C21H17NO3S2/c23-14-12-16(25-20(13-14)22-8-10-24-11-9-22)15-4-3-7-19-21(15)27-18-6-2-1-5-17(18)26-19/h1-7,12-13H,8-11H2 |
InChi Key | XRKYMMUGXMWDAO-UHFFFAOYSA-N |
Canonical SMILES | C1COCCN1C2=CC(=O)C=C(O2)C3=C4C(=CC=C3)SC5=CC=CC=C5S4 |
Isomeric SMILES | C1COCCN1C2=CC(=O)C=C(O2)C3=C4C(=CC=C3)SC5=CC=CC=C5S4 |
WGK Germany | 3 |
PubChem CID | 5278396 |
分子量 | 395.49 |
溶解性 | DMSO 33 mg/mL Water <1 mg/mL Ethanol <1 mg/mL |
---|---|
密度 | 1.42 |
折光率 | 1.71 |
沸点 | 628.01° C at 760 mmHg |
熔点 | 229.98°C |
分子量 | 395.500 g/mol |
XLogP3 | 3.900 |
氢键供体数Hydrogen Bond Donor Count | 0 |
氢键受体数Hydrogen Bond Acceptor Count | 6 |
可旋转键计数Rotatable Bond Count | 2 |
精确质量Exact Mass | 395.065 Da |
单同位素质量Monoisotopic Mass | 395.065 Da |
拓扑极表面积Topological Polar Surface Area | 89.400 Ų |
重原子数Heavy Atom Count | 27 |
形式电荷Formal Charge | 0 |
复杂度Complexity | 643.000 |
同位素原子数Isotope Atom Count | 0 |
定义的原子立体中心计数Defined Atom Stereocenter Count | 0 |
未定义的原子立体中心计数Undefined Atom Stereocenter Count | 0 |
定义的键立体中心计数Defined Bond Stereocenter Count | 0 |
未定义的键立体中心计数Undefined Bond Stereocenter Count | 0 |
所有立体化学键的总数The total count of all stereochemical bonds | 0 |
共价键合单元计数Covalently-Bonded Unit Count | 1 |
WGK Germany | 3 |
---|
Purity(HPLC) | 98-100(%) |
---|---|
Appearance(K126884) | White to Beige Powder,Solid,Crystals or Chunks |
NMR spectrum | Conforms to Structure |
通过匹配包装上的批号来查找并下载产品的 COA,每批产品都进行了严格的验证,您可放心使用!
批号(Lot Number) | 证书类型 | 日期 | 货号 |
---|---|---|---|
![]() |
分析证书 | 24-07-08 | K126884 |
1. Zhao Mengjie, Li Yanhui, Lu Chenfei, Ding Fangshu, Xu Miao, Ge Xin, Li Mengdie, Wang Zhen, Yin Jianxing, Zhang Junxia, Wang Xiefeng, Ge Zehe, Xiao Hong, Xiao Yong, Liu Hongyi, Liu Wentao, Cao Yuandong, Wang Qianghu, You Yongping, Wang Xiuxing, Yang Kun, Shi Zhumei, Qian Xu. (2023) PGC1α Degradation Suppresses Mitochondrial Biogenesis to Confer Radiation Resistance in Glioma. CANCER RESEARCH, 83 (7): (1094-1110). [PMID:36696363] [10.1158/0008-5472.CAN-22-3083] |
1. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC. (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM.. Cancer Res, 64 (24): (9152-9). [PMID:15604286] [10.1021/op500134e] |
2. Kubota S et al.. (2014) Activation of the prereplication complex is blocked by mimosine through reactive oxygen species-activated ataxia telangiectasia mutated (ATM) protein without DNA damage.. J Biol Chem, 289 (9): (5730-46). [PMID:24421316] |
3. Bunch H et al.. (2021) BRCA1-BARD1 regulates transcription through modulating topoisomerase IIß.. Open Biol, 11 (10): (210221). [PMID:34610268] |
4. Lee K et al.. (2015) Cyclo(phenylalanine-proline) induces DNA damage in mammalian cells via reactive oxygen species.. J Cell Mol Med, 19 (12): (2851-64). [PMID:26416514] |
5. Zeman MK et al.. (2014) DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis.. J Cell Biol, 206 (2): (183-97). [PMID:25023518] |
6. Lv J et al.. (2017) Feedback regulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 via ATM/Chk2 pathway contributes to the resistance of MCF-7 breast cancer cells to cisplatin.. Tumour Biol, 39 (3): (1010428317694307). [PMID:28347251] |
7. Berger G et al.. (2015) G2/M cell cycle arrest correlates with primate lentiviral Vpr interaction with the SLX4 complex.. J Virol, 89 (230-40). [PMID:25320300] |
8. Brustel J et al.. (2018) Large XPF-dependent deletions following misrepair of a DNA double strand break are prevented by the RNA:DNA helicase Senataxin.. Sci Rep, 8 (3850). [PMID:29497062] |
9. Poletto M et al.. (2017) Modulation of proteostasis counteracts oxidative stress and affects DNA base excision repair capacity in ATM-deficient cells.. Nucleic Acids Res, 45 (17): (10042-10055). [PMID:28973444] |
10. Wakasugi M et al.. (2014) Nucleotide excision repair-dependent DNA double-strand break formation and ATM signaling activation in mammalian quiescent cells.. J Biol Chem, 289 (41): (28730-7). [PMID:25164823] |
11. Yamamoto Y et al.. (2018) Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion.. Brain Res, 1687 (82-94). [PMID:29510140] |
12. Uehara M et al.. (2020) Pharmacological inhibition of ataxia-telangiectasia mutated exacerbates acute kidney injury by activating p53 signaling in mice.. Sci Rep, 10 (4441). [PMID:32157166] |
13. Hilton BA et al.. (2017) Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes.. FASEB J, 31 (9): (3882-3893). [PMID:28515154] |
14. Isobe SY et al.. (2021) Protein phosphatase 1 acts as a RIF1 effector to suppress DSB resection prior to Shieldin action.. Cell Rep, 36 (2): (109383). [PMID:34260925] |
15. Chung G et al.. (2015) REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans.. Genes Dev, 29 (18): (1969-79). [PMID:26385965] |
16. Sun C et al.. (2020) Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction.. EMBO J, 39 (21): (e103420). [PMID:32935380] |
17. Pancholi NJ & Weitzman MD. (2018) Serotype-specific restriction of wild-type adenoviruses by the cellular Mre11-Rad50-Nbs1 complex.. Virology, 518 (221-231). [PMID:29547809] |
18. Sherrard A et al.. (2018) Streamlined histone-based fluorescence lifetime imaging microscopy (FLIM) for studying chromatin organisation.. Biol Open, 7 (3): [PMID:29535103] |
19. Huang J et al.. (2020) Tandem Deubiquitination and Acetylation of SPRTN Promotes DNA-Protein Crosslink Repair and Protects against Aging.. Mol Cell, 79 (5): (824-835.e5). [PMID:32649882] |
20. Garvin AJ et al.. (2019) The deSUMOylase SENP2 coordinates homologous recombination and nonhomologous end joining by independent mechanisms.. Genes Dev, 33 (5-6): (333-347). [PMID:30796017] |
21. Okumoto K et al.. (2020) The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation.. Elife, 9 [PMID:32831175] |
22. Meng Y et al.. (2019) TRAF6 mediates human DNA2 polyubiquitination and nuclear localization to maintain nuclear genome integrity.. Nucleic Acids Res, 47 (14): (7564-7579). [PMID:31216032] |
23. Bunch H et al.. (2015) Transcriptional elongation requires DNA break-induced signalling.. Nat Commun, 6 (10191). [PMID:26671524] |
24. Kim W et al.. (2019) ZFP161 regulates replication fork stability and maintenance of genomic stability by recruiting the ATR/ATRIP complex.. Nat Commun, 10 (5304). [PMID:31757956] |
25. Zhao Mengjie, Li Yanhui, Lu Chenfei, Ding Fangshu, Xu Miao, Ge Xin, Li Mengdie, Wang Zhen, Yin Jianxing, Zhang Junxia, Wang Xiefeng, Ge Zehe, Xiao Hong, Xiao Yong, Liu Hongyi, Liu Wentao, Cao Yuandong, Wang Qianghu, You Yongping, Wang Xiuxing, Yang Kun, Shi Zhumei, Qian Xu. (2023) PGC1α Degradation Suppresses Mitochondrial Biogenesis to Confer Radiation Resistance in Glioma. CANCER RESEARCH, 83 (7): (1094-1110). [PMID:36696363] [10.1158/0008-5472.CAN-22-3083] |